

HCL-003-001513

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

October - 2017

Mathematics: BSMT - 501 (A)

(Mathematical Analysis & Group Theory)

Faculty Code: 003

Subject Code: 001513

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instruction: All questions are compulsory.

1 Answer the following questions in short:

20

- (1) Define Open set
- (2) Give an example of a subset of metric space R which is not open and closed
- (3) Define Isolated point
- (4) Define Derived set
- (5) If E = [1, 2] is a subset of metric space R then find E^0
- (6) Define Lower Riemann Integration
- (7) If $f(x) = \frac{20}{x}$, $x \in [2, 20]$ and partition $P = \{2, 4, 5, 20\}$ then find ||P||
- (8) State fundamental theorem of Riemann Integration
- (9) Define Riemann sum
- (10) State General form of first mean value theorem
- (11) Define Right coset
- (12) Write the order of the set A_n of all even permutations $S_n (n \ge 2)$
- (13) Define Permutation

- (14) If f = (1,2,3)(4,6,5,7,8) then find O(f), where $f \in S_8$
- (15) For group $(Z_5, +_5), O(4) = \underline{\hspace{1cm}}$
- (16) Define Inner automorphism
- (17) For the group $(Z_6,+_6)$ find generators of Z_6
- (18) Define Index of subgroup H in group G
- (19) Define Normal subgroup
- (20) Is S_3 and Z_6 are isomorphic? Give the reason.
- 2 (A) Answer any three:

6

- (1) Define Norm of partition and finer partition.
- (2) If (X,d) is a metric space and $A,B\subset X$ and $A\subset B$ then $\overline{A}\subset \overline{B}$
- (3) Obtain border set of the subset (-1,1) of metric space R.
- (4) Determine whether set $[0,\infty)$ of metric space R is open or closed set.
- (5) If $f(x) = \frac{20}{x}$, $x \in [2,20]$ and partition $P = \{2,4,5,20\}$ then find U(P,f)
- (6) Evaluate: $\lim_{n\to\infty} n \left[\frac{1}{n^2 + 1^2} + \frac{1}{n^2 + 2^2} + \dots + \frac{1}{2n^2} \right]$
- (B) Answer any **three**:

9

- (1) Prove that every continuous function f on [a,b] is Riemann integrable on [a,b]
- (2) If f is decreasing function 'on [a,b] then prove that f is R-integrable.
- (3) If (X,d) is a metric space and $A,B\subset X$ then prove that $(A\cup B)'=A'\cup B'$
- (4) If f and g are R-integrable on [a,b] then prove that f + g is also R-integrable on [a,b]

- (5) Prove that every finite subset of any metric space is a closed set.
- (6) Prove that union of finite closed sets of metric space is a closed set:
- (C) Answer any two:

10

- (1) In usual notations prove that \overline{E} is a closed set in metric space.
- (2) State. and prove general form of first mean value theorem.
- (3) Prove that $\frac{3}{4}$ is in cantor set.
- (4) Prove that $\frac{\pi^2}{10} \le \int_0^{\pi} \frac{x}{3 2\cos x} dx \le \frac{\pi^2}{2}$
- (5) Prove that $\lim_{n\to\infty} \left(\frac{n^n}{n!}\right)^{\frac{1}{n}} = e^{-\frac{n!}{n!}}$
- **3** (A) Answer any **three**:

6

- (1) If $\sigma = (1234)$, $\sigma \in S_5$ then find σ^{-1}
- (2) If $f: R \to R$ is defined as $f(x) = x^2$ then check whether f is a permutation or not.
- (3) Define: Index of a subgroup in the group.
- (4) Prove that the inverse element is unique in the group.
- (5) If $a^2 = e$ for each element a of a group G then show that G is commutative.
- (6) Check whether (Z,+) is cyclic group or not.
- (B) Answer any three:

9

(1) Let $H \le G$ and let $a, b \in G$ then show that $aH = Ha \Leftrightarrow ab^{-1} \in H$

HCL-003-001513]

3

[Contd...

- (2) Prove that intersection of two subgroups of a group is also a subgroup.
- (3) State Lagrange's theorem. Converse of this is true? If not then give example
- (4) Draw the lattice diagram of Z_8
- (5) If H and K are any two subgroups of group G such that (O(H, O(K)) = 1 then show $H \cap K = \{e\}$
- (6) If H is a normal subgroup of group G with $i_G(H) = m$ then prove that $a^m \in H; \forall a \in G$
- (C) Answer any two:

10

- (1) State and prove Lagrange's theorem. for finite groups
- (2) Prove that a group cannot be a union of its two proper subgroups.
- (3) State and. prove Cayley's theorem.
- (4) Prove that the combination of two disjoint cycles in S_n is commutative.
- (5) Show that $(R,+) \cong (R_+,\cdot)$
